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MAGNETOHYDRODYNAMIC BOUNDARY LAYER BETWEEN PARALLEL 
STREAMS OF DIFFERENT MAGNETIC FIELDS AND TEMPERATURES 

by H.  P. Pao and C.  C. Chang 

ABSTRACT 

An analysis  and  calculations of the fuee laminar  boundary  layer flow between 

parallel sfreams of different.  magnetic  fields  and  temperatures  were made for  an  in- 

compressible,  viscous,  !,heurnally and  electrically  condwctjng  f luid Small I perflrrbation 

and  approximate scIutionas were  given. The approximate solvlian for 06- 1 gives 

the exact  numerical so l~ l i ion  i n  most cases. The integration  of  the  exact  boudary h y a -  

equations was carried O I J ~  and some sample calculations  were shown in the graphs. 

The magnetic  f ield h i c k e n s  !.he flow boundary layerr and thus provides  a sfabi!ir.u'ng 

effect  on the flow  field. The possibipify of an  extension to the parailel sirearns of  NO 

different  f luids is also  investigated. 
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fluid  velocity 

magnetic f ield strength 

f e ,  8.1 (pr /4=p) ' '2 ,  
normalized  magnetic f ield strength or Alfren wave 
velocity 

temperature 

f I u id pressure 

(fa + gz )/2 + p / f  + g*y, total pressure 

gravitational  acceleration 

electrical  field vector 

( U , / Z Y X  ) y , similarity  variable 

velocity stream function 

magnetic potential  function 

dimensionless function associated with 

dimensionless function associated with A 

dimensionless function associated with 7 

m +  n 

m -  n 

uniform velocities  at + 00 and - 00 

uniform magnetic fields  at + 00 and - 
uniform temperatures at + 00 and - 00 



I 

-3- 

U 

Fi 

fla 

x 

rr 

- 
f 

G 

W 

A 
- m 

- 
n 

F 
- 
W 

P 
P 
3 

u, - U I  

u1 - u 

H, - f 
G +  7 

velocity stream function of t 

magnetic  potential  function of f 

dimensionless  function  associated  with p 
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fluid  density 

fluid  viscosity 

,u/P, k inematic  viscosity 
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Subscripts 

112 

electr ical  conductivi ty 

magnetic  permeability 

I / ( 4 n 1 r ) ~  magnetic  diffusivity 

heat  conductivity 

specific  heat  at consfant. pressure 

average  temperature  gradaw? 
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I. INTRODUCTION 

The theoretical and experimental studies related to the problem of  flow between two 

parallel streams of same or different densities have had  renewed interest in the past  decades. 

The purpose of the present investigation i s  to study the interaction between parallel streams 

and magnetic  fields.  In general, when a  magnetic field i s  present, i t s  effect upon  an 

electrically  conducting  fluid has been known to be of a  stabilizing nature. It is, therefore, 

to be expected  that  a  magnetic field in the present  case wil l  have a  stabilizing  effect upon 

the fluid motion, and this i s  evidently the case. 

1 
. Lessen  discussed the stability  of the free laminur boundary layer between two 

uniform streams of fluids of same density and obtained  the velocity  distribution in  the 

course of his investigation. He reached the  conclusion  that the flow i s  unstable even 

2,3 
for  very small  Reynolds  numbers.  Lock extended the work of Lessen by considering 

4 
parallel streams of  different densities.  Lin has considered the stability  of two parallel 

steams for a compressible fluid. Stuart has investigated the stability  of pressure flow 

between parallel planes under a  parallel magnetic field, and  Lock has considered the 

stability  of this  type of  flow under a transverse magnetic field. They found that  the 

5 

6 

magnetic field always has a  stabilizing  effect on the fluid motion. 

In the present investigation,  the  velocity,  magnetic and temperature fields are 

obtained. It i s  found that the magnetic field thickens the boundary layer, thus, 

indicating  its  stabilizing  effect upon the  highly unstable flow. It i s  hoped that  a sub- 

sequent  paper wi l l  present an analysis and detailed  calculations on the stability  of  this 

type of flow. 
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2. FUNDAMENTAL EQUATIONS 

For an incompressible,  viscous, electrically conducting fluid,  in steady  two 

dimensional  motion,  the  governing equations are: 

- al.4 ax t - =  av 0, aY 

In the derivation  of (1) - (6) ,  i t  i s  assumed that the net charge density i s  zero, and 

that $ , and pe are constant. 

With use of (4), Eq. (5) and (6) become 
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It follows  that 

It can  readily be shown by Ohms law  that Eq. (9) leads to 

E, = constant, 

where E, i s  the  z-component of t h e   e l e c t r i c a l   f i e l d .  I f  we impose the  

condition  that  the  electrical  f ield vanishes at  inf ini ty, i t  then  vanishes  everywhere. Eq. (9) 

now becomes 

"9 

In this investigation we w i l  I restrict  our  consideration  to  zero  electrical  field. 

Equations (3) and (4) can  be  integrated by introducing  two  scalar  functions 

6nd  A(x,y), such that 

* In  a source  free  and  steady  state  flow,  the electr ic  f ield obeys VXS=O and v -  E =O . 
If we impose the  condition  that  the  electrical  field be constant at   inf in i ty,  i t  followGhen, 
from  the  potential  theory,  that E, i s  constant  everywhere i n  the  region. Thus from 
Ohms law, Eq. (9) follows  immediately 
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On cross-differentiating (I) and (2) to  eliminate  the  total pressure  terms, and  then 

introducing  the stream and  magnetic  functions, we obtain 

where the subscripts denote partial differentiations.  Equation (10) becomes, after 

introducing stream and  magnetic  functions, 

Now, with the boundary layer  approximation, 

equations (13) and (14) take the forms 

% 3;ur - Yi %YY = A ~ A Y Y X  - A x  AYYY + V )Lrryy , 

- Py". i- y& + p y  - 0 
Equation (16) can be integrated  once  with respect to y  which  yields 
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where SCx) i s  an arbitrary  function of x.  Comparing this equation with 

equation (1) we obtain 

that i s ,  the pressure gradient in  x-  direction i s  independent of y.  Therefore, 

we  can evaluate  PAX at y = +- OQ . - 

From the physical flow and  magnetic field configuration (Fig. l ) ,  the  boundary 

conditions  are: 

It follows that 

s(x) = 0 at Y = + , - r  x > o  # 

hence  s(x) i s  zero  everywhere.  Equation (18) now  becomes 

If we  suppose  now that the  conditions of the problem  introduce no other 

parameters,  we find,  for example, that )b i s  a function of x,y, 9 , 7 ,U,, 
ui, HI and Hz only, x3 that a dimensional argument requires that 

?/' be expressed  as 
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where m i s  a  function also of the  parameters 

The  same dimensional  argument  leads  to 

By differentiation, the velocity and magnetic field components are  obtained 

where  the  prime indicates differentiation  with respect  to 3 .  
Substitution of (23) and (25) into (22) and (17) leads  to  the ordinary 

differential equations 

The boundary  conditions are: 
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A fifth condition i s  arbitrary up to a  translation along the 3 - axis. 

Energy  Equation 

When the  two streams are  also of different temperatures,  the  boundary layer 

energy  equation  should be  added which assumes the  form 

in which the  Joule  heat i s  absent  because  the electric  field i s  zero  everywhere. We 

assume the  temperature difference i s  so small  that  the  constants of  fluid properties 

remain  uniform. We also assume that  the internal Froude  number F i  or  the 

Richardson  number i s  large, so that  the  bouyancy  force of gravity i s  small in 
8 

comparison with the inertia force,  where 

Thus, the flow  field i s  essentially  unaffected by the temperature field for  the  above 

assumption. If we define 

T - T~ - ( A T ) ,  e(f) 

equation (29) becomes 

where 
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are known as the Prandtl, and Eckert numbers. 

The boundary conditions for  the  temperature field are 

5 - + -  e ” . / ,  

3 4“ 
: 8 - 0 .  

3. SOLUTION BY THE METHOD OF SMALL PERTURBATIONS 

In some practical cases, the differences in both the velocity and the  magnetic 
. -. 

.&: field between  streams are small. It i s  advisable to  find some approximate solution for this 

- special case first. 

Equations (26) and (27) in the last section correspond to the following boundary 

layer equations: 

- rf + 3 g - 0 .  ay 

(33 1 

(34) 

Now, we define 

- 
with U << Ut and f << H, . Substituting Eq. (35) into Eqs. (33) and 

(34), and neglecting terms of order z/uland T/Hl. compared with unity, we have 
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where%=$/U,. D i f f e ren t i a t i ng  Eq. (37) wi th  respect  to y and using gqs. (3) 

and (4), we obtain 

Adding and subtracting (36) and (38), and assuming the magnetic  Prandtl's number 

a to be unity, we have 

I 

where 

G =  U +  7 ,  w =  z - f  , 

z2= - 1 zl= - . 
I - P I  I + P I  

@ I  OCI 

The velocity and magnetic field  distribution  at the beginning o f  the 

mixing zone i s  

The solutions of Eqs. (39) and (40) with the boundary conditions (41) are 

" 
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where 

It follows  that 

where 

We now  note  that  solutions (45) and ( 4 6 )  break  down  at p, = 1 .  The reason 

i s  quite  obvious,  since  the  effect  of  transport  of  vorticity i s  essentially  annulled by the 

electromagnetic  force, as 8 ’ 3 1 .  As a consequence, the  vort ici ty  can be diffused 

farther  out,  and  in this way,  the  boundary  layer i s  thickened. The boundary  layer 

continues  to  thicken  with  increase  in ,6, until  the  crit ical  value,& = 1 , at  which 

point  the  inertial  force i s  essentially  annulled  by  the  electromagnetic  force. As a 

result,  the  boundary  layer  approximations no longer  hold  true  for i -PI <e 1 .  



-15- 

When PI > I , 
2 3: becomes negative,  the  whole formulation of the 

problem  then  breaks  down. From a physical point of view, when /3, > I ,  the 

Alfvhn speed H, i s  greater  than  the fluid speed U I  ; the  disturbances can,  then, 

propagate upstream.  Thus, no  steady  state motion i s  possible. The above solution is, 

therefore, limited  to the range PI < I with (l-/$) not small. This i s  a  general feature 

of the aligned field  in the  hydromagnetic  boundary layer flow. 
9,10,11 

The energy equation (29), with the  small perturbation approximation, becomes 

in which we have also neglected the dissipation heat.  Equation  (47)  gives, with the 

4. APPROXIMATE SOLUTION FOR&= 1 

As in Section 3, we define 

- 
u =I u,- u , f -  H I -  7 ,  

where 5 'and 7 are not necessarily  small  here in  comparison to Ut and HI . 
From  Eqs. (3) and (4) we have 

The  same dimensional  argument, as in Section 2, leads to 



\ 

By differentiation, we have 

The boundary layer equations (26) and (27) become 

where s = c/U,= I-& It i s  easily seen that Eqs. (51) and (52) reduce to the equations 

for mall perturbation  approximation i f  J 44 1 and s r *( f,, where r = g/O. 

The boundary conditions in the present  case are 

5 -  0 0 :  5 e - 0 ,  9/- 0 

5 - - - :  R " f )  R ' - c  r .  (53) 

Adding and subtracting (51) and (52), and  assuming a =1, we obtain 

where = 5i -t- '5 and = m - n. Since a fifth boundary condition i s  

arbitrary up to a translation  along t h e j -  axis, we require  that 

" 

rn'(0) - T I . ( 5 6 )  



Being  suggested by the m a l  I perturbation  solution , we now as- that 

~ ' ( 0 )  - + r (57) 

Integration gives 

- . t  m- - 2 3 + Q and f.3 + b  as 3 - 0  
From  the conditions ( 5 3 )  we  also have 

m = J +  c a r  = r j  + da as $". 

In the actwl  case, a and b are very small and  the constants c; d, cI o d  da 

are positive. Therefore, we wi l l  approximate  the terms involving 8 in E*. (54) ond 

(55) by 

where 
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It follows  immediately  that 

Therefore,  we obtain 

Integration of (64) gives 

The approximate solutions (62), (63) and (65) differ from  the  small perturbation solutions (45), 

(46) and (48) only by the argument in the error function # defined in (44). A comparison of 

the approximate solutions with the exact boundary layer solutions i s  shown in  Fig. 3. E q .  (62) 

gives the values of  u and f which i s  slmost indistinguishable from the  exact  solution i n  this particular 

case.  Small perturbation solutions  are  also shown in  dotted  lines.  Fig. 4 shows that for h < / / z ,  

the small perturbation  solution has quite a discrepancy with the exact  solution  while the 

approximate solution  involves much  smaller  errors. For instance, with A = 1/3,the maximum 

error for the approximate solution i s  only 1 per cent while  that for  the  small perturbation  solution i s  

4.5 per cent. Even  when h= 0, the  average  error i s  about 2 per cent for  the approximote 

solution. I t  i s  noted that the approximate solution i s  very  helpful. in  the numerical integration. 
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5. THE INTEGRATION OF THE EXACT BOUNDARY LAYER EQUATIONS 

5. I Asymptotic Expansions 

The governing equations (26), (27) and (31) have  the property that, if 

m(5), n (5) and 0 (3 ) are any solutions, then m, (a), n, (w) and a(&) are  also 

solutions, provided that 

Restricted to the case &= 1 ,  i t  follows from Eqs. (26) and (27) that 

R" - J" I RJ" 5#, 

i n  which we have written 

R = m +nand  S =  m - n .  

Differentiating (67) and then subtracting this from (66) we obtain 

First, let us consider  the asymptotic expansions  when 4 i s  large and negative. 

The boundary conditions  require that 

R'- x and SI- x - p  OS f -c - 0 0 .  

There are two cases to be  considered, h > p z  and x = p a = o .  

No steady  state cases wil  I correspond to x < , since,  then,the Alf& 
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speed Hz. i s  greater than  the fluid speed UZ at 5 -t -00. 

In the  first  case,  when > p., we  can  assume that 

where 

and 

Since it i s  known 
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integration of this  expression  leads  to 

z, = - (*)"'( 5 + A )  , 

A second approximation  can be  obtained by substituting { (A+ p a ) ( z  +A)  + 

Ct."; iz: )  forRand { ( A - P J ) ( S + A )  + c,e-Li/tf 1 for 

,$ in Eqs. (66) and (68). We get eventually, when 5 i s  large  and  negative, 
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In the second case, i f  x = = 0 , we can suppose that R (5)  v -a 

and Stf)-. "Q as 3 + -00 , where  a i s  a  constant. The reason that R and S 

approach the same constant -a, i s  quite obvious.  Since, i f  we let pa- o first, Eqs. 

(86) and (89) yield the conclusion that R and S approach  the same constant. Now 

we let -+ 0 , we should expect they approach the same constant at X= 0 . 
If we substitute -a for R and S i n  Eqs. (66) and (68) and integrate three times,  we 

get 
aJ R ( 4 ) -  - a  + ale , 

S ( f ) =  -a + b,e *J . 
This suggests that we try the  expansions 

Substituting in Eqs. (66) and (68),  and equating to zero the coefficients  of successive  powers 

of eul , we obtain the relations 

. . . .  - 1  

and in  general a l l  coefficients are functions of a , a, and b, . If we let o = a 5 , 
then we have 



with 
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Since m and n  are  related with R and S in the following manner 

the  asymptotic expansions  for m and n are readily obtained from above eqwtions. 

5.2 Numerical  Soltuion 

We expand the solution in a Taylor series about 4 = 0 

where a l l  coefficients  are  functions  of a. I , Qa be and b, . 

The asymptotic  solution  reveals  that the constants occuring in (86) and (89), or 

(94) and (95), are three in number, namely A, C I  , cz , (a, u, , b, for the 

case h = O a  = 0 )  and B, d, , d2 . Therefore, the total number of these arbitrary 

constants i s  eleven. If we now seek to join the asymptotic  solution and the power series 

solution at some intermediate  positive and negative values of 3 , say 5, and - j ,  

inspection of the differential equutions (26) and (27) reveals  that continuity  of m, n, and al 

derivatives,.at 3, and - f, i s  insuted by  equating m, rn’ , m ”  , n , x‘ 

This yields  ten  alg,ebraic equations in eleven unknowns, P., a,, Q,&, & A ,  4, Q, 0 ,  .I, and 

da . Hence.one constant i s  arbitrary. However, theboundary  conditions and the 

- 

I 

I 

governing  equations  reveal  that this arbitrariness is  only up to a  translation  along the 5 - axis. 
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We can, therefore  pre-assign  a  fixed  value  to  one  of these  constants, say U,  = 0 , 

or Q,=(1 + h ) / 2 ,  which corresponds to m(o) = O  or m ’ (  0 ) = (1 +X)/2. 

Some sample numerical  solutions  are shown i n  Figs. (5) - (8). The asymptotic 

values  are  reached  quite  rapidly,  especially  when R, and RI are  small.  In most 

cases, the  velocity  and  magnetic  field  approach  their  asymptotic  values.when 

I 5 I =z 4 . The approximate  solution i n  Section 4 gives  a  good  guide i n  the 

numerical  integration. 

The numerical  solutions i n  Figs. (5) - (8) correspond to h = O., 0.333, 0.50, 

and 0.80 respectively. As we can see that  the  thickness of  flow  boundary  layer 

increases as the  strength o f  the  magnetic  field increases; that is, the  magnetic 

f ie ld has a  diffusing  effect  on  the  flow  field. This effect i s  much  profound  when 

or p2 i s  comparable  to one, as shown in  Figs. 6 and 7. Indeed,  the  approximate 

and  small  perturbation  solutions  have  also shown this effect  and some discussion has 

been  given  in these sections. It w i l l  be  interesting  to  note  that  the  flow  field becomes 

more  stable  when the  strength of  the  magnetic  f ield increases, since  then  the  boundary 

layer i s  thickened  and  the  velocity shear i s  reduced. A detailed  study  of  the  stability 

of the  megnetohydrodynamic  flow  between  parallel streams w i l l   g i ve  some answer to 

the  question:  how  the  flow  between  parallel streams can  be  stabilized  by  a  magnetic 

field. 
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6 .  TEMPERATURE FIELD 

When the fluid motion i s  determined,  the  temperature field  follows  readily 

from Eq. (31). Since  the asymptotic expansion  for m i s  known, the asymptotic 

expansion for 8 can similarly be obtained. The numerical solutions for the 

temperature field are  also shown in Figs. (5) - ( 8 ) .  

As a special case  when the magnetic field strength i s  zero, Eqs. (26) and (31) 

become, with y = 1 

h e r e  we have neglected the dissipation heat in the energy equation. The boundary 

conditions are 

5 -  0 0 :  m - I ,  6 - 1 ,  
1 

I - " I  
m t " , x ,  8 - 0 .  I 

If we define 

i t  follows  immediately that 
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whence 

In this case, the  temperature field i s  related  to the flow  field through this 

simple relation. A comparison  between Eq. (104) and  the exact solution with 

dissipation  heat  included, i s  shown in Fig. 9. As  we  can  see that the  dissipation  heat 

i s  important  when X< 1/2. On the  other hand,  the dissipation  heat may  be 

neglected  safely when X > 0.8. In Fig. 9. Eq. (104) i s  almost indistinguishable 

from  the exact solution  for h = 0 . 8 .  

7. PARALLEL  STREAMS OF TWO FLUIDS 

When the parallel streams are of two fluids so that the  constants of 

fluid properties  are different in the  two  streams. If the mass diffusion i s  neglected, 

there  are,  then, some additional conditions to be  satisfied at the interface. 

Since  the  problem i s  arbitrary up to a  translation  along  the 3 - axis and  the 

interface i s  one of the stream  surfaces,  we wil l  take J = o  as the interface 

and 

m =  0 at 5 -  0. 

Other conditions at the interface are:  the  shearing  stress, velocity, magnetic field 

strength,  temperature  and  heat flux must  be  continuous, which yields 
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Eqs. (105) and ( 1 0 6 )  together with the conditions at  infinity 

provide adequate boundary conditions for the governing equations (26), (27) and (31). 

Therefore, asymptotic expansions,  Taylor  series  and numerical integration can be 

carried  out  in a similar manner. 

8. CONCLUSIONS 

From a study of  the interaction between the flow and magnetic fields, the 

following conclusions  may be drawn: 

1. The thickness of  the flow boundary layer increases as the strength of  

magnetic field increases. In other words, the magnetic field has a diffusing 

effect upon the flow field. 

2. The thickening  of the flow boundary layer reduces the velocity shear,  thus, provides a 

stabilizing  effect upon fluid motion. 

3. The approximate solution for the case of a= 1 gives a quite 

satisfactory flow  field,  which  only  involves a discrepancy of 1 per  cent  from the 

exact numerical  solution in most  cases. 

4, The extension to the two  fluids may be readily  carried out in a similar 

manner. 
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Figure 3. Comparison of small perturbation solution, approximate solution and exact solution. 



Figure 4. Comparison of small perturbation  solution,  approximate  solution  and exact solution for 
non-magnetic case. 
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Figure 5 .  Velocity,magnetic and  temperature fields . 
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Figure 6 .  Velocity, magnetic and  temperature fields. 
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Figure 7. Velocity,  magnetic and  temperature fields. 
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Figure 8. Velocity, magnetic and temperoture fields. 
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Figure 9. Comparison of Temperature field  given by Eq. (104) and the  exact solution. 


